The ATP-dependent lon protease of Salmonella enterica serovar Typhimurium regulates invasion and expression of genes carried on Salmonella pathogenicity island 1.
نویسندگان
چکیده
An early step in the pathogenesis of Salmonella enterica serovar Typhimurium infection is bacterial penetration of the intestinal epithelium. Penetration requires the expression of invasion genes found in Salmonella pathogenicity island 1 (SPI1). These genes are controlled in a complex manner by regulators in SPI1, including HilA and InvF, and those outside SPI1, such as two-component regulatory systems and small DNA-binding proteins. We report here that the expression of invasion genes and the invasive phenotype of S. enterica serovar Typhimurium are negatively regulated by the ATP-dependent Lon protease, which is known to be a major contributor to proteolysis in Escherichia coli. A disrupted mutant of lon was able to efficiently invade cultured epithelial cells and showed increased production and secretion of three identified SPI1 proteins, SipA, SipC, and SipD. The lon mutant also showed a dramatic enhancement in transcription of the SPI1 genes hilA, invF, sipA, and sipC. The increases ranged from 10-fold to almost 40-fold. It is well known that the expression of SPI1 genes is also regulated in response to several environmental conditions. We found that the disruption of lon does not abolish the repression of hilA and sipC expression by high-oxygen or low-osmolarity conditions, suggesting that Lon represses SPI1 gene expression by a regulatory pathway independent of these environmental signals. Since HilA is thought to function as a central regulator of SPI1 gene expression, it is speculated that Lon may regulate SPI1 gene expression by proteolysis of putative factors required for activation of hilA expression.
منابع مشابه
Lon, a stress-induced ATP-dependent protease, is critically important for systemic Salmonella enterica serovar typhimurium infection of mice.
Studies on the pathogenesis of Salmonella enterica serovar Typhimurium infections in mice have revealed the presence of two prominent virulence characteristics-the invasion of the nonphagocytic cells to penetrate the intestinal epithelium and the proliferation within host phagocytic cells to cause a systemic spread and the colonization of host organs. We have recently demonstrated that the ATP-...
متن کاملHilE interacts with HilD and negatively regulates hilA transcription and expression of the Salmonella enterica serovar Typhimurium invasive phenotype.
The ability of Salmonella enterica serovar Typhimurium to traverse the intestinal mucosa of a host is an important step in its ability to initiate gastrointestinal disease. The majority of the genes required for this invasive characteristic are encoded on Salmonella pathogenicity island 1 (SPI1), and their expression is controlled by the transcriptional activator HilA, a member of the OmpR/ToxR...
متن کاملLon protease activity causes down-regulation of Salmonella pathogenicity island 1 invasion gene expression after infection of epithelial cells.
Salmonella enterica serovar Typhimurium causes self-limiting gastroenteritis in humans and a typhoid-like disease in mice that serves as a model for typhoid infections in humans. A critical step in Salmonella pathogenesis is the invasion of enterocytes and M cells of the small intestine via expression of a type III secretion system, encoded on Salmonella pathogenicity island 1 (SPI-1), that sec...
متن کاملDelineation of the Salmonella enterica serovar Typhimurium HilA regulon through genome-wide location and transcript analysis.
The Salmonella enterica serovar Typhimurium HilA protein is the key regulator for the invasion of epithelial cells. By a combination of genome-wide location and transcript analysis, the HilA-dependent regulon has been delineated. Under invasion-inducing conditions, HilA binds to most of the known target genes and a number of new target genes. The sopB, sopE, and sopA genes, encoding effector pr...
متن کاملInvasion genes are not required for Salmonella enterica serovar typhimurium to breach the intestinal epithelium: evidence that salmonella pathogenicity island 1 has alternative functions during infection.
Salmonella enterica serovar Typhimurium invasion genes are necessary for bacterial invasion of intestinal epithelial cells and are thought to allow salmonellae to enter and cross the intestinal epithelium during infection. Many invasion genes are encoded on Salmonella pathogenicity island 1 (SPI1), and their expression is activated by HilA, a transcription factor also encoded on SPI1. We have s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 184 1 شماره
صفحات -
تاریخ انتشار 2002